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Abstract—For robust feature matching, a popular and par-
ticularly effective method is to recover smooth functions from
the data to differentiate the true correspondences (inliers) from
false correspondences (outliers). In the existing works, the well-
established regularization theory has been extensively studied
and exploited to estimate the functions while controlling its
complexity to enforce the smoothness constraint, which has
shown prominent advantages in this task. However, despite
of the theoretical optimality properties, the high complexities
in both time and space are induced and become the main
obstacle of their application. In this paper, we propose a novel
method for multivariate regression and point matching, which
exploits the sparsity structure of smooth functions. Specifically,
we use compact Fourier bases for constructing the function,
which inherently allows a coarse-to-fine representation. The
smoothness constraint can be explicitly imposed by adopting a
few low-frequency bases for representation, resulting in reduced
computational complexities of the induced multivariate regression
algorithm. To cope with potential gross outliers, we formulate
the learning problem into a Bayesian framework with latent
variables indicating the inliers and outliers and a mixture model
accounting for the distribution of data, where a fast Expectation-
Maximization solution can be derived. Extensive experiments are
conducted on synthetic data and real-world image matching and
point set registration datasets, which demonstrate the advantages
of our method against the current state-of-the-art methods in
terms of both scalability and robustness.

Index Terms—Feature matching, regularization, compact rep-
resentation, outlier, mismatch removal.

I. INTRODUCTION

IN computer vision, establishing reliable correspondences
between two feature sets is a fundamental problem that

typically arises from image matching or point set processing
tasks [1]. It is the critical prerequisite in a wide spectrum of
applications such as panoramic stitching [2], image and point
set registration [3], 3D reconstruction [4], and simultaneous
localization and mapping [5]. Traditional solutions for the
matching problem include directly dealing two discrete point
sets [3], [6], [7], which are very sophisticated but less attractive
because of the high computational complexity. Fortunately, for
the processed data such as images or point sets, the local
features can be utilized and has been extensively studied to
simplify the problem [8], [9]. By evaluating the similarity
of the feature vectors (or descriptors) associated with each
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two points, most of the possible matches can be rejected, and
only a limited number of matches are kept as the putative
correspondence set. However, due to the inherent ambiguities
of local feature representation, the putative correspondence
set is typically contaminated by a large number of outliers.
Consequently, the problem we are faced with boils down to
identifying the inliers, or mismatch removal. In this paper, we
focus on investigating such algorithms to filter out the outliers
and (possibly) recover the underlying transformation model of
inliers from the contaminated data.

The central issue for the robust matching task is the ex-
ploitation of geometric constraint. For rigidly moving objects,
it has been revealed by the study of camera models that
the geometric constraint relating two image scenes can be
exactly modeled by a fundamental matrix, known as the
epipolar geometry, with the Degree of Freedom (DoF) of
8 [10]. For certain special cases, the DoF can be even further
reduced, with models such as homography and affine. This
simple fact has been the inspiration of a large group of
resampling methods. Examples include the long established
RAndom SAmple Consensus (RANSAC) algorithm [11] and
its numerous variants that cover all phases of the resampling
scheme. Despite their successes, some fundamental setbacks
exist in this framework. First, the required runtime grows expo-
nentially with the outlier ratio increasing, making it impractical
for severely contaminated data. Second, the parametric model
has its own restrictions and cannot address more general
scenarios, e.g., non-rigid transformation.

The publication of the seminal work Vector Field Con-
sensus (VFC) [12] has encouraged another line of work.
The geometric constraint used is more general, i.e., motion
coherence or smoothness. The transformation of points is
modeled by a more flexible vector field function, which
admits a higher DoF. The smoothness constraint is imposed
by using the well-established regularization theory [13], [14].
The VFC algorithm has been demonstrated to be a general
philosophy to handle the robust matching task, applicable
to both simple cases controlled by a low-DoF parametric
model and complex cases involving a high-DoF non-rigid
transformation. However, the main drawback of VFC is its
high computational complexity, i.e. O(N3) in time and O(N2)
in space, where N denotes the number of correspondences. In
efforts to remedy this issue, FastVFC [12] and SparseVFC [15]
have been proposed. Specifically, for FastVFC, a low-rank
approximation of the kernel matrix is used, which reduces
the complexity to O(N) in time in the main iterations.
However, the computation of the low-rank approximation still
requires time in O(N3). For SparseVFC, a sparse random



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

basis technique is used to compute the vector field function,
which reduces the complexity to O(N) in both space and time.
However, this strategy lacks sufficient theoretical justifications
and typically leads to numerical instability in practice. As will
be shown, its computational complexity does not conform to
O(N) in general.

In this paper, analogous to SparseVFC, we also take ad-
vantage of the sparsity structure to develop a computationally
efficient method. The difference is that we explore a different
way to model the underlying transformation instead of it that
the classical regularization theory has suggested. The main
observation is that smooth functions actually possess a sparse
structure in a different representation, which has not been
exploited in classical regularization theory. Different from the
Reproducing Kernel Hilbert Space (RKHS), we use Fourier
bases to construct the function space, which allows a coarse-to-
fine representation directly linked to the concept of frequency,
or smoothness. As we will demonstrate, this leads to a much
more efficient algorithm that recovers smooth functions from
contaminated data, without sacrificing the robustness.

Our contributions in this paper include the following three
aspects. Firstly, we introduce an alternative of the classical
regularization theory to learn a smooth function from sparse
samples. The method exploits the sparsity structure and admits
a compact Fourier representation to model the function to
be learnt, resulting in computationally efficient algorithms
without sacrificing the accuracy. Secondly, we incorporate the
compact representation technique into a Bayesian framework
to cope with potential gross outliers in the sample set for
robust image feature matching, which significantly generalizes
the practicability of our method. Thirdly, we demonstrate the
superiority of our method in terms of both efficiency and
robustness in various tasks, including multivariate regression,
robust feature matching and point set registration.

The rest of the paper is organized as follows. Sec. II
describes background material and related work. Sec. III
introduces the classical regularization theory and describes
the proposed method to learn a smooth multivariate function
from sparse data. In Sec. IV, we consider the image feature
matching task and discuss an outlier-robust algorithm with
our compact representation technique to address it. Sec. V
illustrates the experimental results on the tasks of multivariate
regression, robust feature matching and point set registration
to demonstrate our method. The concluding remarks are pre-
sented in Sec. VI.

II. RELATED WORK

In this section, we briefly review the background literature
that is closely related to our work. This includes the methods
to create a putative correspondence set for matching, and
robust matching methods with different geometric constraints
to remove outliers. Some solutions that directly establish
correspondences from two sparse point sets are also discussed.

For data instances such as images and point sets, local
features are of great interest and have been extensively studied
for matching. Usually at first interest points are detected, and
then a feature vector, i.e. descriptor, is generated for each

point for local feature representation. For image matching, this
includes some long known methods such as Scale-Invariant
Feature Transform (SIFT) [8], Speeded-Up Robust Features
(SURF) [8], Oriented FAST and Rotated Brief (ORB) [16], as
well as some recently developed methods using deep learning
technique [17], [18]. The situation is similar for point sets,
both hand-crafted methods, such as Shape Context [9] and
Fast Point Feature Histogram (FPFH) [19], and deep learning-
based solutions have been well-studied [19], [20]. However,
due to the inherent ambiguities of local features, the putative
correspondence set usually contains a large number of outliers.

In response to the outlier issue, a myriad of methods
using different geometric constraints have been proposed. The
resampling methods, represented by the well-known RANSAC
algorithm [11], has been a standard solution for decades.
Assuming rigid motion of objects, the geometric constraints
of correspondences can be described by low-DoF parametric
models, such as fundamental matrix, homography transforma-
tion or affine transformation. This establishes the theoretical
foundation of the resampling methods, which iteratively draws
a minimal subset of samples from the contaminated data, in the
hope of finding an outlier-free subset to compute the true ge-
ometric model. The inliers can then be identified accordingly.
Improvements of RANSAC cover almost all phases of the
resampling scheme, including model quality evaluation [21],
guided sampling [22], [23], [24], fast verification [25] and
local optimization [26], [27]. Notice that Universal SAmple
Consensus (USAC) [28] is an acknowledged representative
of the RANSAC family, which unifies the most meaning-
ful improvements. Recently, Maginalizing SAmple Consensus
(MAGSAC) [29] has been proposed to get rid of the cumber-
some requirements for setting an inlier-outlier threshold.

Generalized geometric constraints have also been exten-
sively studied, which are based on the pursuit of smooth
transformations. This first includes methods that aim to find
a smooth function for the transformation of points. In Iden-
tifying point correspondences by Correspondence Function
(ICF) [30], the so-called correspondence function is defined
to model the bidirectional transformation and estimated by
the robust Support Vector Regression technique to reject
mismatches. In Bounded Distortion (BD) [31], the piecewise
affine deformation model with bounded distortion is consid-
ered, and it has been shown that such a map can be found
by solving a constrained optimization problem. A practically
more powerful method is VFC [12], which explicitly imposes
smoothness constraint. The nonparametric model is expressed
as a vector field, which is assumed to be smooth in the
RKHS, using the regularization theory. The whole estimation
procedure is achieved in a Bayesian framework under the
consideration of the outlier distribution. The VFC algorithm
is efficient and general, and has encouraged many follow-up
works [32], [33], [34], [35]. Recently, the geometric constraint
has also been considered without specifying a transformation.
In COherence based DEcision boundaries (CODE) [36], the
true matches are identified by using likelihood functions,
which are determined by nonlinear regression technique in
a specially designed domain for correspondences to enforce
local motion coherence. A clustering view can also be used to
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resolve the feature matching problem, by seeing each corre-
spondence as a data point in a more general sense to separate
inliers from outliers [37], [38], [39]. In Locality Preserving
Matching (LPM) [40], a locality preserving matching method
is proposed, where a (relaxed) local geometric distortion
functional is defined. The credibility of each correspondence
is directly given as the closed-form solution. This method also
leads to some variants [41], [42], and a similar idea based on
local supporting matches is proposed in Grid-based Motion
Statistics (GMS) [43]. Learning-based matching methods have
been given increasing attention in recent years. For instance,
Ma et al. proposed a general framework to learn a two-class
classifier for mismatch removal [44]. Yi et al. presented a
first attempt to use deep learning techniques for the robust
matching to aid the wide-baseline stereo task [45], followed
by a number of more recent works [46], [47].

In addition to the two-stage strategy, which first uses local
features to create putative correspondence set in the first stage
and remove outliers with geometric constraint in the second
stage, there are also a group of methods aiming to directly
establish correspondence between two point sets. The point
set registration methods and the majority of graph matching
methods follow this idea. The former category, represented
by Iterative Closest Point (ICP) [48], Coherent Point Drift
(CPD) [3] and Thin-Plate Splines Robust Point Matching
(TPS-RPM) [6], recovers a transformation to align the point
sets. For the latter category, such as Spectral Matching with
Affine Constraint (SMAC) [49], Integer Projected Fixed Point
(IPFP) [50], Factorized Graph Matching (FGM) [7] and
Composition based Affinity Optimization (CAO) [51], the
problem is formulated as a combinatorial quadratic assignment
problem. However, directly matching two point sets is a much
harder problem, and these methods typically suffer from high
computational complexity. Notice that due to the relaxation of
constraints, some graph matching methods such as Spectral
Matching (SM) [52] and Graph Shift (GS) [53] are applicable
to solving the mismatch removal problem and quite efficient.

Aiming at recovering a smooth function, our method is
firstly closely related to a number of outlier-robust methods,
which is represented by the seminal work VFC [12], built on
classical regularization theory. In comparison to VFC and its
variants, the proposed method is differently established and
built on a novel compact representation framework to exploit
sparsity structure of smooth functions. The advantages of our
formulation will be shown in the remainder of this paper. Our
method is also closely related to certain point set registra-
tion methods, represented by CPD [3], which also adopts a
probabilistic formulation. The differences are two-fold. First,
the formulation of CPD is intended for directly establishing
correspondences between two point sets, in contrast to our
method which operates on putative correspondences. This
drastically increases the computational complexity of CPD.
Second, in a similar manner to VFC, CPD also utilizes the
classical regularization theory to model deformations, which
is different from our compact representation framework. These
two factors render the proposed method a much more efficient
choice for the matching problem, with an inherently sparse and
more flexible deformation model.

III. SMOOTHNESS-DRIVEN MULTIVARIATE REGRESSION
FROM SPARSE DATA

This section describes the proposed method to learn a
smooth multivariate function from sparse data. We start by
introducing the classical regularization theory, and then present
our method using a compact representation.

A. Regularization Theory

Suppose we have obtained a set of sparse samples S =
{(xn, yn)}Nn=1 ⊂ X × Y sampled i.i.d. from an unknown
probability distribution P on X ×Y . Typically, the input space
X is a subset of RD, and the output space Y is a subset
of R. The goal is to learn a function f with small expected
error E[V (y, f(x)], in which the expectation is taken w.r.t.
P and V is a prescribed loss function such as the square
error (y − f(x))2. To recover the function from S is clearly
ill-posed with no further restrictions on f , since it has an
infinite number of solutions. A classical way to solve it is
to use the regularization theory [13], [14], i.e. learning f as
the minimizer of a regularized risk functional:

min
f∈H

N∑
n=1

V (yn, f(xn)) + λ‖f‖2H, (1)

where ‖f‖H is a norm in an RKHS H defined by the
positive definite function K, λ is the regularization parameter
that controls the tradeoff between the empirical risk and the
complexity (smoothness) of the solution.

It can be shown that the optimal solution to (1) must have
the form:

f(x) =

N∑
n=1

cnK(x,xn), (2)

where {cn}Nn=1 is a set of real parameters. The kernel K has
the property that for x ∈ X , K(x, ·) ∈ H, and for f ∈ H,
〈f,K(x, ·)〉H = f(x). Hence by (2):

‖f‖2H =

N∑
m=1

N∑
n=1

cmcnK(xm,xn). (3)

In light of (2) and (3), (1) reduces to

min
c

N∑
n=1

V (y,Kc) + λcTKc, (4)

where y = [y1, y2, . . . , yN ]T , c = [c1, c2, . . . , cN ]T and K
is an N × N matrix with mn-th entry as K(xm,xn). The
result in (2) is known as the representer theorem, which is
remarkably important as it makes the variational problem (1)
amenable for computations. In fact, as long as the loss function
V is convex, a unique minimizer can be found by simple
numerical algorithms for (4). Considering the simplest case
with square error, we can see the coefficients can be obtained
by solving the following linear system:

(K + λI)c = y. (5)

Clearly, the linear system (5) incurs O(N3) time complexity
and this cannot be reduced by using a different loss function
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since K is of size N×N . The high computational complexity
is one of the major restrictions for real-world applications.
As in VFC, a straightforward idea is to apply the low rank
approximation to the positive definite matrix K, which reduces
the time complexity of (5) to O(N). However, the procedure
itself involves the singular value decomposition (SVD) decom-
position, which is still of O(N3) time complexity.

B. Learning Smooth Functions with Compact Representation

In this paper, we attempt to resolve this issue by exploiting
the sparsity structure. Note that in classical regularization
theory, the function is constructed in a highly expressive
function space, i.e. the RKHS, and a regularization term is
used to control its complexity. Our key observation is that, for
a smooth function, there is a more compact representation,
which can be fruitfully leveraged to design a computationally
more efficient algorithm. Next, we discuss how to construct
such a compact representation.

Without loss of generality, we consider the domain as
a D-dimensional cube Ω := [0, 1]D. In practice, this can
be accomplished by a simple normalization step beforehand.
We start by considering the eigenfunctions {φ1, φ2, . . .} and
eigenvalues of {µ1, µ2, . . .} of the scalar Laplacian ∆ on Ω:

−∆φk = µkφk. (6)

To complete the specification, we need to determine a bound-
ary condition. Naturally, there are three different choices:

φk(x) = 0 (x ∈ ∂Ω) (Dirichlet), (7a)
∂

∂n
φk(x) = 0 (x ∈ ∂Ω) (Neumann), (7b)

∂

∂n
φk(x) + hφk(x) = 0 (x ∈ ∂Ω) (Robin), (7c)

where ∂
∂n is the normal derivative pointed outwards the

domain, and h is a positive constant. For image matching and
point set registration, the Dirichlet condition may not be a good
choice since the intensity of the vector field can be very large
near the boundary. Meanwhile, the Robin condition may be
unnecessarily complex, thus we adopt a Neumann condition in
our formulation. These φi can be then computed analytically,
which are exactly the cosine elements of the Fourier basis [54]:

Bφ := {φ : [0, 1]D → R,x→
D∏
d=1

cos(xdπjd)|j ∈ ND}, (8)

where xd denotes the d-th component of x ∈ Ω, jd denotes the
d-th component of j. The corresponding eigenvalue for each
basis function is π2‖j‖2. It has been proved that Bφ forms a
complete basis set in the function space L2(Ω) of measurable
and square-integrable functions on Ω [55], [56]. Some basis
functions in the 2D case are visualized in Fig. 1.

It becomes much easier to impose smooth constraint with
Bφ since the eigenvalue is conceptually related to frequency.
This means the number of basis functions can be adjusted
for either speed or expressiveness. Specifically, to represent
a smooth function, the Fourier bases are first rearranged in
ascending order of their eigenvalues π2‖j‖2, and Bφ inter-
changeably becomes {φ1, φ2, . . .}. That is to say, denoting

Fig. 1. Visualization of some Fourier basis functions in [0, 1]2 with Neumann
boundary condition. From left to right, top to bottom, the frequency increases
and the corresponding j that determines the functions are [1, 1], [2, 1], [3, 2]
and [3, 3], respectively. The continuous transformation of color from blue to
yellow indicates the values changing from small to large.

the eigenvalue of function φi as µi, the condition 0 ≤ µ1 ≤
µ2 ≤ . . . ↗ ∞ is satisfied. Then we can define and use a
restricted set of T bases:

BT := {φ1, φ2, . . . , φT }, (9)

which implies a compact representation:

f(x) =

T∑
n=1

anφn(x). (10)

To further regularize the function, we interpret the coefficients
a = [a1, a2, . . . , aT ]T as random variables with a normal
distribution a ∼ N (0, 1

λR), with R := diag(ω1, ω2, . . . , ωT ).
The weights ωk are constructed from the eigenvalues as
follows:

ωk = µ
−D2
k . (11)

The mathematical background of this choice for the weights
follows the Karhunen-Loeve expansion [57], which promotes
a damping of the high frequency components and thereby
smoothness of the function. Consequently, with the compact
representation (10), the variational multivariate regression
problem has the following finite-dimensional form:

min
a

N∑
n=1

V (y,Γa) + λaTR−1a, (12)

where Γ is an N ×T matrix with each entry Γmn = φn(xm).
Analogously, for the simplest case with square error, the

optimal solution can be obtained by solving the following
linear system:

(ΓTΓ + λR−1)a = ΓTy. (13)

Clearly, (13) is computationally much more efficient to solve
compared to (5), with O(N) time complexity.
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IV. SMOOTH FUNCTIONS FOR ROBUST FEATURE
MATCHING

In this section, we focus on the fundamental problem in
computer vision, i.e. robust feature matching, as an application
for the proposed compact representation technique. As will
be shown, the problem can be translated to learning several
multivariate functions, which are required to be smooth but
less demanding in accuracy. This is exactly the scenario that
our compact representation can excel in. Moreover, in the
last section, we mainly discuss the multivariate regression
problem with a clean sample set, i.e. no outliers. However,
for robust feature matching, a large number of outliers may
be included in the data, thus we start by introducing a Bayesian
formulation to cope with outliers.

A. Problem Formulation

Suppose we have obtained a set of putative correspondences
S = {(xn,yn)}Nn=1, where xn,yn ∈ RD are D-dimensional
column vectors and typically D = 2 or 3. To identify the
inlier set I ⊆ S, we aim to recover from S the underlying
transformation, i.e. a smooth vector field f : RD → RD in our
context, such that yn = f(xn) for (xn,yn) ∈ I. The inlier
set I can be readily found as the correspondences consistent
with the transformation.

To this end, for each correspondence (xn,yn), we consider
it as a measurement yn at position xn. We assume that the
correspondences are independent and identically distributed.
Moreover, for the inliers, we assume that the noise is Gaussian
on each component with zero mean and uniform standard
deviation σ. For the outliers, since the measurement yn
lies randomly in a bounded region in RD, we assume the
distribution to be uniform 1/a with a denoting the volume
of this region. We then associate the n-th correspondence
with a latent variable zn ∈ {0, 1}, where zn = 1 indicates
the correspondence (xn,yn) being an inlier and zn = 0
indicates otherwise. Each latent variable zn follows a discrete
distribution, i.e. p(zn = 1) = γ, and p(zn = 0) = 1−γ, where
γ ∈ [0, 1]. Let X = (x1,x2, . . . ,xN )T be the position data,
and let Y = (y1,y2, . . . ,yN )T be the measurements. Under
the i.i.d. assumption of data, the joint likelihood function takes
the form:

p(Y|X, θ) =

N∏
n=1

∑
zn

p(yn, zn|xn, θ)

=

N∏
n=1

(
γ

(2πσ2)D/2
e−
‖yn−f(xn)‖2

2σ2 +
1− γ
a

),

(14)

where θ = {f , σ, γ} represents the unknown parameters.
In a Bayesian view, we also have prior information for θ
to regularize the estimation process, expressed as a prior
distribution p(θ).

Using Bayes rule, the maximum a posteriori (MAP) esti-
mation can be expressed as:

θ∗ = arg max
θ
p(θ|X,Y) = arg max

θ
p(Y|X, θ)p(θ). (15)

This is equivalent to finding the parameters that minimize the
following energy:

E(θ) = − ln p(θ)−
N∏
n=1

ln
∑
zn

p(yn, zn|xn, θ). (16)

B. An Expectation-Maximization Based Solution

To solve (16), we consider the EM algorithm, which is a
general technique for learning and inference with the existence
of latent variables and very efficient. Basically, it is an iterative
algorithm that alternates between two steps: the expectation
step (E-step) and the maximization step (M-step). Considering
the negative log posterior function (16), the expectation of the
complete-data log likelihood is:

L(θ, θold) = − 1

2σ2

N∑
n=1

pn‖yn − f(xn)‖2 − D

2
lnσ2

N∑
n=1

pn

+ ln(1− γ)
N∑
n=1

(1− pn) + ln γ

N∑
n=1

pn − ln p(θ),

(17)
where pn = P (zn = 1|xn,yn, θold) denotes the posterior
probability of zn. The E-step and M-step are accordingly
outlined below:

E-step: In this step, the posterior probabilities are evaluated
based on the current parameter values. Due to the i.i.d.
assumption, it can be achieved separately for each correspon-
dence:

pn =
γe−

‖yn−f(xn)‖2

2σ2

γe−
‖yn−f(xn)‖2

2σ2 + (1− γ) (2πσ2)D/2

a

. (18)

M-step: This step determines the revised parameter estima-
tion θnew using (17): θnew = arg maxθ L(θ, θold). For σ and
γ, the updating rules can be derived by taking the derivatives
of (17) and setting them to 0. Let P = diag(p1, p2, . . . , pN )
be a diagonal matrix, we have:

σ2 =
tr((Y −T)TP(Y −T))

D · tr(P)
, (19)

γ =
tr(P)

N
, (20)

where T = (f(x1), f(x2), . . . , f(xn))T and tr(·) is the trace.
Next we consider to update the vector field function f . We

assume flat priors for σ and γ, thus p(θ) degrades into p(f).
Abstracting the terms related to f , we obtain the following
functional:

ε(f) =
1

2σ2

N∑
n=1

pn‖yn − f(xn)‖2 − ln p(f). (21)

This is the core step for vector field learning, and in this
paper, we use the compact representation technique for the
best efficiency.

Remark. Note that (21) requires to compute a vector-
valued function f . Typically, this relates the task to multi-
task or multi-output learning, which aims to leverage useful
information contained in each task to help improve the overall
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Algorithm 1 Compact Representation Consensus
Input: The correspondence set S , basis functions BT , constant
λ and inlier threshold τ
Output: Inlier set I

1: Initialize γ, a, T = 0N×2, P = IN×N ;
2: Initialize σ2 by (19);
3: Construct Γ using BT ;
4: while L not converge do
5: E-step:
6: Update P by (18);
7: M-step:
8: Update ai by (24) for i = 1, 2, . . . , D;
9: Update T by (22);

10: Update σ2 and γ by (19) and (20);
11: end while
12: Determine the inlier set by (25).

performance. In this context, different tasks correspond to
learning the mappings from xn to each component of yn. We
denote each mapping as fi : RD → R for the i-th component.
However, in most previous works for robust matching [3], [12],
the implicit assumption that fi is independent is used. This is
mainly because that it is unclear how the mappings are related,
and that the independent assumption works well in practice
with preferred efficiency. Thus, we also take this assumption,
which allows the use of multivariate regression techniques.

Let each mapping fi be a compact representation to the
underlying smooth function:

fi(x) =

T∑
n=1

ainφn(x). (22)

As aforementioned, we can see ai = [ai1, a
i
2, . . . , a

i
T ]T as ran-

dom variables, and the term − ln p(fi) translates to aTi R−1ai.
Consequently, (21) can be decomposed into solving the
following problem:

min
fi∈span(BT )

1

2σ2

N∑
n=1

pn‖yin − fi(xn)‖2 − ln p(fi)

=
1

2σ2
‖P1/2(Yi − Γai)‖2 + λaTi R−1ai,

(23)

where yin denotes the i-th component of yn, Yi is the i-th
column of Y and Γ is an N × T matrix with each entry
Γmn = φn(xm).

It can be seen that (23) is convex and the optimal solution
can be obtained by solving the following linear system:

(ΓTPΓ + λσ2R−1)ai = ΓTPYi. (24)

After convergence of the EM algorithm, we can obtain
the inlier set with a predefined threshold τ by evaluating the
posterior probability:

I = {(xn,yn) : pn > τ, n ∈ NN}. (25)

We name our algorithm as Compact Representation Con-
sensus (CRC) and summarize it in Alg. 1.

C. Computational Complexity and Implementation Details

The main computational cost for our CRC is to solve the
linear system (24), which requires runtime in O(N) since Γ is
of N×T and N � T . Thus the time complexity of our CRC is
O(cN) where c denotes the number of iterations for EM. The
space complexity is O(N) to store Γ. Although our CRC has
theoretically the same time complexity as a sparse random
basis approximation, it is much faster due to the numerical
instability of the latter. This can be seen in Sec. V-A.

There are several parameters to be set for our CRC, i.e. T ,
λ, γ, and τ . Parameter T represents the number of adopted
basis functions, we empirically set it to 15 as suggested in
Sec. V-A. Parameter λ is used to control the magnitude of the
regularization for a, we empirically set it to 1. Parameter γ
reflects our initial assumption on the amount of inliers in the
correspondence sets, we empirically set it to 0.95. Parameter
τ is a threshold to decide the correctness of a match, we
empirically set it to 0.75. The data is normalized to [0, 1]2

before processing.

V. EXPERIMENTAL RESULTS

In this section, numerical experiments are conducted to
demonstrate the superiority of our method. First, synthetic
data is used to compare the proposed method with classical
regularization theory and its several variants for the task of
multivariate regression under outliers. Then, the application
to image feature matching is considered and real image
datasets are used. Additionally, we explore the generality of
the proposed method on point set registration. The experiments
are performed on a laptop with 2.3 GHz Intel Core CPU, 16
GB memory and MATLAB Code.

A. Multivariate Regression with Synthetic Data

In a general point of view, our method can be seen as an
alternative of the classical regularization framework in learning
smooth functions from sparse samples. We use synthetic data
to provide an ideal environment for testing the performances
of our method and the regularization theory. We constructed
the ground truth smooth function as a mixture of C Gaussian
functions, which have the same covariance 0.04I and center at
random positions in [0, 1]2 with different random amplitudes
restricted to [0, 1]. In this way, the function is guaranteed to
be smooth and its complexity grows with C. An example is
shown in Fig. 2 with C = 8, which is shown as a smooth
surface in the 3D space. We then draw random samples from
this function and manually add a number of outliers to the data
as the input to each method. The performance is evaluated by
the discrepancy between the recovered function and the ground
truth. The discrepancy is calculated as the mean absolute error
w.r.t. a number of uniform samples in [0, 1]2.

Three competitors are adopted for comparison, including
the classical regularization theory [13], [14] and two ap-
proximation schemes based on low-rank approximation [12]
and sparse random basis [15]. For low-rank approximation,
we approximate the kernel matrix using the first 30 largest
eigenvalues and the corresponding eigenvectors. For sparse
random basis, we use 80 bases as suggested in [15]. All
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Fig. 2. A testing example of the algorithms for learning smooth functions
from sparse outlier-contaminated samples. The function is visualized as a
surface embedded in 3D space.

methods are implemented using the same Bayesian framework
to cope with outliers. Fig. 3 presents all the testing results,
where each datum is a summary statistic based on 50 randomly
generated synthetic instances. Fig. 3(a) and Fig. 3(b) show
the performance of each method against the number of inlier
samples and outlier samples, respectively. It can be seen
that in our settings, 100 samples are sufficient to recover
the smooth function. Our method based on compact Fourier
Representation is clearly advantaged since it requires fewer
inlier samples for regression, and is more robust to outliers.
The regularization theory and the low-rank approximation has
similar performances. However, the sparse random basis strat-
egy seems to fail to give accurate results. As shown in Fig. 2, it
generates unduly smooth surface. In Fig. 3(c), the performance
of our method w.r.t. the number of basis functions (T ) is
investigated. We can see that generally 15 basis functions are
already sufficient for regression of smooth functions, which
clearly indicates the compactness of the Fourier representation.
Fig. 3(d) shows the runtime statistics. It can be observed that
our method has the lowest computational complexity, and can
be orders of magnitude faster that the competitors. Although
the sparse random basis method has the same computational
complexity as our method, it is significantly slower than the
proposed CRC due to its numerical instability.

B. Robust Image Feature Matching

In this subsection, we focus on the application of robust
feature matching for image datasets. The aim is to differen-
tiate the inliers from the contaminated correspondence set.
As aforementioned, our method has the same rationale as
VFC [12] and its variants FastVFC and SparseVFC [15], i.e.,
fitting smooth functions to reject the outliers. Three widely
used datasets in the robust feature matching literature are
adopted in our evaluation:

-DAISY. The dataset is used in [40], which consists of wide
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Fig. 3. The summary statistics of each method’s performance on synthetic
data. Each data point is averaged over 50 instances of randomly generated
smooth surfaces.

baseline image pairs with ground truth depth maps, including
two short image sequences and several individual image pairs.
In total 52 image pairs are created for evaluation. Determined
by the imaging scenes, the correspondences are related by
epipolar constraint.

-CRS. The dataset is a composition of the rigid and
projective remote sensing datasets used in [42], which consists
of 161 pairs of remote sensing images, including color images
captured by a UAV, images obtained by synthetic-aperture
radars, panchromatic aerial photographs and color infrared
aerial photographs. The relation between the image pairs can
be described by homography transformation.

-VGG+. The image pairs in this dataset are a collective
of the data used in VFC [12], including image pairs related
by homography and non-rigid transformation, and image pairs
of wide baseline. We use SIFT to establish the putative
correspondence set for each pair, and manually annotate the
inliers as ground truth. This dataset is quite challenging due
to the low inlier ratio.

Some representative image matching examples from the
adopted datasets are used for testing of the proposed CRC,
as shown in Fig. 4. The data cover different types of feature
matching scenarios including image pairs related by homog-
raphy, fundamental matrix and non-rigid transformation. For
each group of results, the left image pair schematically shows
the matching result, and the right motion field provides the
decision correctness of each correspondence in the putative
set. It can be seen that our CRC can always produce satisfying
results, regardless of the complex relations of the image pairs,
and even in the presence of a high outlier ratio.

Since our method utilizes EM algorithm for optimization,
it essentially gives only a locally optimal solution, thus the
problem of sensitivity to initial guess also needs to be ad-
dressed. We use the combination of all the three datasets,
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Fig. 4. Feature matching results of our CRC on eight representative image pairs from DAISY, CRS, and VGG+. The head and tail of each arrow in the
motion field correspond to the positions of feature points in two images (blue = true positive, black = true negative, green = false negative, red = false
positive). For visibility, in the image pairs, at most 100 randomly selected matches are presented, and the true negatives are not shown. Best viewed in color.
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Fig. 5. Testing for the influences of different initial guesses to our CRC
on the combination of DAISY, CRS and VGG+ datasets. The performance
is evaluated by F-score, and the red curve represents the result of a uniform
initialization, the blue curve represents a random initialization. The average
F-score for the two settings are given in the legend.

namely DAISY, CRS and VGG+ to test the robustness of
our method to different initial guesses. In our method, the
initial guess is determined by the initialization of P, which
encodes the probabilities of each correspondence being an
inlier. We construct two different initializations, i.e. uniform
initialization which gives a uniform probability, and random
initializations which gives a random probability for each
correspondence. The performance is evaluated by F-score and
the results are given in Fig. 5. It can be observed that the
uniform initialization and the random initialization give very
close results, which clearly demonstrates the robustness of our
method to initial guesses.

Nine state-of-the-art methods for robust feature match-

ing are adopted for comparison, namely RANSAC [11],
ICF [30], SM [52], VFC [12], FastVFC [12], SparseVFC [15],
LPM [40], GMS [43], and the recent deep learning technique
ACNe [47]. All these algorithms are implemented based on
publicly available codes. The parameters are fixed after being
carefully tuned. The quantitative results are presented in Fig. 6.
The cumulative distribution of initial inlier ratios on the three
data sets is provided in the first row. We can see that the
VGG+ dataset is the most challenging one with quite low inlier
ratio. The statistic results on the three data sets, i.e. precision,
recall, F-score and runtime, are summarized in the second,
third, fourth and fifth row, respectively. The classical RANSAC
algorithm has a varying performance in the three datasets. This
is due to its randomized nature, which is disadvantaged in the
presence of severe outliers. The ICF algorithm also attempts
to recover a smooth function, however, it is very sensitive to
parameter settings, which leads to its inferior performances.
The SM algorithm utilizes pairwise relations to obtain the
matches with high credibility, which has better generality but
less accuracy, thus its performances are generally moderate.
The VFC family, i.e. VFC, FastVFC and SparseVFC, have
very close performances, and outperform all the other methods
despite their high runtime. The LPM and GMS algorithm
are much more efficient, yet they can not achieve on par
performance with the VFC family. In contrast, our CRC is
very competitive in both accuracy and computational com-
plexity. Based on a similar rationale, it has slightly inferior
performance with the VFC family, but is more than an order
of magnitude faster. Different from SparseVFC, it achieves
true linear complexity in our experiments, and the runtime is
less than 10 milliseconds in general. This demonstrates the
superiority of our method. Also, our method has shown a
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Fig. 6. Quantitative comparisons of our CRC and nine competitors for robust image feature matching on three datasets, i.e. (left to right) DAISY, CRS,
VGG+. From top to bottom, the initial inlier ratio, precision, recall, F-score and runtime are presented with respect to the cumulative distribution. The average
statistics are reported in the legend for each method. FastVFC and SparseVFC are abbreviated as FVFC and SVFC, respectively.
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Fig. 7. Registration results of our method on the fish and Chinese character patterns. The goal is to align the model point sets (blue pluses) onto the target
point sets (red circles). In the first three columns, the point sets suffer from different levels of deformation, and in the last three columns, the point sets suffer
from different levels of occlusion. The first and third rows are the initial point sets, and the second and fourth rows present the registration results.

clear advantage compared to the state-of-the-art deep learning
technique ACNe, in terms of both accuracy and efficiency.

C. Non-rigid Point Set Registration

Point set registration is a classical problem in computer
vision, which aims to align one point set to another by
recovering the transformation. For the non-rigid case, the
most popular solutions are typically based on regularization
theory. Similar to robust feature matching, the transformation
is generally simplified in practice, as the composition of two
separate multivariate functions [3]. Thus we can apply our
CRC to robustly recover the transformation and register the
point sets. As in VFC, our algorithm follows an ICP-like
procedure. In each iteration, we use Shape Context [9] to
establish correspondences between point sets and then use
CRC to robustly estimate the transformation function. We
empirically use the transformed point set after 10 iterations
as the final registration result.

We adopt both synthetic data and real-world data to demon-
strate the efficacy of the proposed method. For synthetic data,
the fish and Chinese character patterns [58] with different
degrees of deformation and occlusion are used in our ex-
periment. Some qualitative results of our method on the two
shapes are depicted in Fig. 7. We organize the results in every
two rows: the first row is the initial point sets, the second
row is the corresponding registration results. For real-world
data, we adopt the publicly available benchmark IMM Face
Database [59]1 for evaluation. The database consists of 240
images of 40 human faces with resolution 640× 480, and for
each face there are 6 samples of different expressions, poses
and illuminations. The facial structures such as eyebrows, eyes,

1http://www.imm.dtu.dk/ aam/datasets/datasets.html

nose, mouth and jaw are annotated using 58 landmarks. The
ground-truth correspondences between the landmark sets are
supplied with the database. In our experiment, we aim at
aligning the landmark sets extracted from different samples of
an individual. For each individual, we construct the registration
pairs using the first sample and each of the rest five samples,
thus creating 5 groups (40 pairs for each group) for regis-
tration. Some qualitative results of face landmark registration
with comparison to other methods are presented in Fig. 8.

For comparison, we adopt the well-known CPD method [3]
and VFC [12], which are in essence developed based on
regularization theory, and also Gaussian Mixture Model Regis-
tration (GMMR) [60] as the competitors. The registration error
between two point sets is characterized by the average Eu-
clidean distance of the ground truth correspondences between
the warped model set and the target set. For each degradation
level in synthetic data, we compute the mean and standard
deviation of the registration errors on all 100 instances to
derive the summary statistics. We also compute these metrics
for each group in the real-world data. The quantitative results
are reported in Fig. 9 for synthetic data and Fig. 10 for real-
world data. From the results, we can see that our method
is able to produce accurate alignments even in the presence
of severe degradations such as non-rigid deformation and
occlusion. In addition, since CPD and GMMR do not involve
local features in the registration process, they are generally
outperformed by VFC and our CRC. The main difference
between VFC and our CRC is the modeling of transformation.
It can be seen that with our compact representation, the
registration error is consistently reduced, as manifested both
in synthetic data and real-world data. This demonstrates the
superiority of our method as an alternative of the methods
driven by classical regularization theory.
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Fig. 8. Some qualitative examples for face landmark registration. The first row showcases an example face group in the IMM Face Database with annotations.
The second row showcases the registration result of our CRC method, and the third, fourth and fifth row showcase the results of VFC, CPD and GMMR,
respectively.
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Fig. 9. Quantitative comparison of CPD, VFC, GMMR and our CRC on the
fish (top) and Chinese character (bottom) patterns. The error bars indicate the
registration error means and standard deviations over 100 instances.

VI. CONCLUSION

In this paper, we propose a novel method for learning
smooth functions from sparse data based on a compact Fourier
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Fig. 10. Quantitative comparison of CPD, VFC, GMMR and our CRC on
the IMM Face Database. The error bars indicate the registration error means
and standard deviations over each group in the database.

representation, and extend it with outlier-robust property us-
ing a Bayesian framework. The theoretical performance has
been tested with synthetic data, in addition, practical appli-
cations such as robust image feature matching and point set
registration are also investigated. Experimental results have
demonstrated that due to the exploitation of sparsity structure,
our method is both robust and efficient, being orders of
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magnitude faster compared to classical regularization theory
without degrading the accuracy.

Although the proposed method has shown remarkable per-
formance in our evaluation, there still exist some limitations
for our CRC. For one, the deformation with the proposed
Fourier basis representation is somewhat restricted due to the
boundary condition. This means that the method may fail to
accurately model a general smooth function near the boundary.
Also, for high-dimensional data, the proposed method may
also be impotent since the number of required low-frequency
Fourier basis functions grows exponentially with dimension.
In the future, we will look more carefully at the problem
of boundary problem to improve the representation power
of the proposed CRC method, thus extending the scope of
CRC to more general deformations. Additionally, we also plan
to explore more practical scenarios to generalize CRC for a
broader range of applications.
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