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Abstract. Geometric estimation from image point correspondences is
the core procedure of many 3D vision problems, which is prevalently
accomplished by random sampling techniques. In this paper, we consider
the problem from an optimization perspective, to exploit the intrinsic lin-
ear structure of point correspondences to assist estimation. We generalize
the conventional method to a robust one and extend the previous analy-
sis for linear structure to develop several new algorithms. The proposed
solutions essentially address the estimation problem by solving a sub-
space recovery problem to identify the inliers. Experiments on real-world
image datasets for both fundamental matrix and homography estimation
demonstrate the superiority of our method over the state-of-the-art in
terms of both robustness and accuracy.

Keywords: Geometric estimation · Robust model fitting · 3D vision ·
Robust subspace recovery

1 Introduction

In 3D vision, a vast majority of applications, such as image stitching [5],
structure-from-motion [17] and simultaneous localization and mapping [26],
rely on feature point correspondences between images for geometric estimation.
However, due to the imperfections of both local key point detection and fea-
ture description techniques, the correspondences are invariably contaminated by
noises and a number of outliers. The degenerated data pose great challenges for
accurate estimation. Consequently, the most widely used estimator in practice
has become the well-known random sample consensus (RANSAC) [15], despite
its simplicity and time of invention.

In essence, RANSAC proceeds by repeatedly sampling a minimal subset of
correspondences to propose hypothesis, e.g., 4 correspondences for homography
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and 7 for fundamental estimation. The process is iterated until a convergence
criterion that provides a probability guarantee of hitting an all-inlier subset
is met. However, some fundamental shortcomings exist with the randomized
hypothesize-and-verify search strategy. One of the main limitations lies in the
degraded performance against dominant outliers. The required time to retrieve
an all-inlier subset grows exponentially with respect to the outlier ratio, and the
estimation accuracy also suffers from high variance.

Targeting on more accurate estimation results and minimum processing time,
almost all phases of the random sampling estimator has been investigated, lead-
ing to a large group of RANSAC variants. For acceleration, one particularly suc-
cessful strategy is to incorporate additional prior information, such as match-
ing score [9] and spatial coherence of correspondences [24,27] to increase the
probability of hitting an all-inlier subset. The verification stage has also been
modified to avoid unnecessary computations [10,25]. However, due to the ran-
domized nature, efficiency and robustness (or accuracy) are often contradictory
to each other. From an optimization perspective, there exists a group of meth-
ods known as consensus maximization in the literature for accurate geometric
estimation [3,4,18,22]. In contrast to random sampling techniques, these meth-
ods translate the geometric estimation problem into an optimization problem, in
which the technical difficulty becomes the highly non-convex objective. Based on
different theoretical guarantees, they can be roughly divided into two categories,
global methods and local methods. However, despite the nice property of theo-
retical optimality, the global methods are generally computationally demanding.
While the local methods are faster, but still too time-consuming for real-time
applications.

In this paper, we also consider the geometric estimation in an optimization
point of view. Differently, we aim at exploring the intrinsic linear structure of
point correspondences. This linear structure is actually previously addressed
in the literature, and can be traced to the classic direct linear transformation
(DLT) [17]. As DLT reveals, geometric estimation task can be accomplished by
solving a (possibly over-determined) set of linear equations derived from the
inliers. Considering the noise, DLT finds the solution minimizing square error.
In practice, DLT is always used in conjunction with random sampling techniques
since it cannot handle outliers. In our method, we further explore the direction to
make full use of the linear structure. We provide a more in-depth analysis of the
linear structure, and excavate it with an outlier-robust �1-based objective that
significantly extends DLT. The resulting optimization problems are shown to be
special forms of robust subspace recovery [20], which allows recently developed
efficient and theoretically well-grounded methods to be applied.

To conclude, our contributions include three aspects. (i) We propose a novel
method with an outlier-robust objective to excavate of the intrinsic linear struc-
ture of point correspondences for geometric estimation. The method exhibits
better efficiency and preferable accuracy in case of dominant outliers compared
to the current state-of-the-art methods. (ii) We generalize the linear structure
discussed in conventional methods and propose several new algorithms based
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on robust subspace recovery to take advantage of it. (iii) We demonstrate our
method on real-world images for both fundamental and homography estimation
tasks with comparisons to current state-of-the-art methods.

2 Related Work

There is a large volume of methods in the literature proposed to address the
geometric estimation problem. Since a comprehensive review that covers all
branches is exhaustive and out of the scope of this paper, in this section, we
only summarize the closely related work that puts our paper into context.

Due to the practical demand of robustness for geometric estimation, the
random sampling techniques remain to be the most prevalent paradigm. A large
number of innovations have been proposed in the past few decades to advance the
plain RANSAC, in terms of both efficiency and accuracy. For acceleration, many
efficient sampling techniques have been proposed, taking advantage of the prior
information available in feature correspondences. For example, as priors, spatial
coherence is utilized in NAPSAC [31] and GroupSAC [27], and matching scores in
EVSAC [16] and PROSAC [9]. Moreover, improving the model verification stage
has also been shown to be critical for the efficiency concern [10,25]. There are
also some efforts that have proven to be able to obtain more accurate estimation
results. These methods include MLESAC [32] and MSAC [30], in which the model
quality is evaluated with a maximum likelihood process. A more illuminating idea
is proposed in locally optimized RANSAC (LO-RANSAC) [11,19], where a local
optimization step is introduced to polish the so-far-the-best model. By involving
more inliers for estimation, the bias induced of noises is reduced and a more
accurate model can be expected. This idea has been recently extended by Graph-
cut RANSAC [1]. Notably, by combining the most promising improvements, the
USAC [29] is proposed as the state-of-the-art of RANSAC variants.

From a different perspective, the geometric estimation problem can be and
has been addressed in an optimization framework, with the concept of consen-
sus maximization. The consensus maximization objective stems from the model
quality evaluation strategy of RANSAC, i.e., counting the number of correspon-
dences with the residuals below a given threshold. In this regard, RANSAC can
be seen as a stochastic solver with no guarantee of the quality of solution. Thus,
a variety of methods attempt to develop algorithms to search the solution with
global optimality guarantee [3,4,6,8,14,22]. However, the computational com-
plexity of these methods is generally prohibitively high due to the fundamental
intractability of the problem. Faster optimization-based methods have recently
been developed without global optimality [7,18,28], yet still require excessive
time compared to random sampling techniques.

Our method follows a different point of view from both categories of the
above efforts. We focus on exploring the intrinsic linear structure that has been
utilized for decades in DLT. The DLT algorithm is widely used for geometric
estimation with the outlier-free data only contaminated by noise. This is hardly
the case in practice and as a result, DLT is always used in conjunction with
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random sampling techniques. In addition, as will be demonstrated, the resulting
problem for exploring the linear structure is related to robust subspace recovery.
Recent advances [21,23,33] in this field have shown great potential in handling
more degraded cases, e.g., dominant outliers. We refer the interested readers to
the recent survey [20] for a comprehensive understanding.

3 Method

Suppose we are given a set of correspondences S = {(xi,x′
i)}N

i=1 with a number
of outliers, where xi = (xi, yi, 1)T and x′

i = (x′
i, y

′
i, 1)T are column vectors

denoting the homogeneous coordinates of feature points from two images. We
aim to recover the underlying geometric structure, such as the fundamental
matrix F ∈ R

3×3 or homography H ∈ R
3×3 that is essential for many 3D vision

applications.

3.1 Preliminaries on DLT

We first give a brief review the classic DLT algorithm, which provides an efficient
solution for geometric estimation by excavating the intrinsic linear structure
in the data. The linear structure of point correspondences indicates that, the
geometric model can be estimated by solving a linear system induced by the
data. In the following, we will discuss the DLT solution for fundamental matrix
F and homography transformation H, respectively.

The fundamental matrix F governs the most general epipolar constraint in
two camera views. This constraint can be expressed as:

x′T
i Fxi = 0. (1)

The homography transformation applies when the feature points are lying close
to a plane or the camera motion is a pure rotation. The transformation can be
expressed in terms of the vector cross product:

x′T
i × Hxi = 0. (2)

For both the cases of estimating F and H, it reduces to solving an overde-
termined linear system in DLT:

Mz = 0, (3)

where M ∈ R
K×D represents the data matrix derived from the correspondences

and z ∈ R
D represents the column vector of parameters. For fundamental matrix

estimation, we have M = [a1,a2, . . . ,an]T and the embedding is

ai = (x′
ixi, x

′
iyi, x

′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1)T . (4)

For homography estimation, we have M = [bT
1 ,bT

2 , . . . ,bT
n ]T and the embedding

is

bT
i =

[
0T −xT

i y′
ix

T
i

xT
i 0T −x′

ix
T
i

]
. (5)

The solution is given as the right singular vector corresponding to the smallest
singular value of M.
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3.2 Robust Generalization

In an outlier-free scenario, DLT is known to be able to give near-optimal results.
Therefore, it is natural to ask that: can we extend the framework of DLT to cope
with outliers? In this section, we try to give a positive answer.

First, we consider the ideal case for estimation, where there exists no noise
for the correspondences. In that case, we can reformulate DLT as follows by
taking outliers into consideration:

min
z∈RD

‖Mz‖0, s.t. z �= 0. (6)

The �0-based functional ‖Ez‖0 simply computes how many points do not con-
form to the linear structure. Since no linear structure is expected for outliers,
the solution of (6) will in general be the ground truth estimation. However, �0
minimization is known to be computationally intractable, thus we replace it by
the following �1 minimization problem:

min
z∈RD

‖Mz‖1, s.t. ‖z‖2 = 1. (7)

In this sense, the geometric task becomes numerically solvable, and also, appli-
cable to noise-contaminated data. The relation between (7) and DLT is clear,
i.e. a DLT solution equals to using an �2-based objective for (7). This explains
the limitation of DLT, since an �2 objective is known to be sensitive to outliers.

Mathematically, (6) and (7) can be seen as a hyperplane fitting problem.
In fact, the exact form of (7) has been recently investigated in the literature
of robust subspace recovery [33,35], where hyperplane fitting is a special case
when the intrinsic dimension of data d = D − 1. The robust property has been
theoretically demonstrated, which roughly states that under some assumptions
on the distributions of outliers, the estimation task with (7) can even tolerate
O(m2) outliers, where m denotes the inlier number.

Note that (7) is non-convex (since the feasible region is a sphere) and non-
smooth (due to the �1-based objective), therefore the solution is non-trivial and
needs additional care. Fortunately, several efforts on the numerical solver for (7)
have been proposed. In [33], (7) is relaxed to a sequence of linear programs, which
guarantees finite convergence to the global optima. However, this approach is
computationally expensive. Alternatively, [33] provides an iteratively reweighted
least squares-based method, which is more efficient but comes with no theoretical
guarantees. A projected sub-gradient descent-based algorithm is proposed in [35].
The algorithm is even more efficient involving only matrix-vector multiplications.

Since the demand for low computational time usually dominates the need
of optimality guarantees for geometric estimation, we adopt the projected sub-
gradient descent-based algorithm. Also, it is important to clarify that due to
the relaxation strategy, the (global) solution for (7) may not be ideal under
noise. In fact, it has been proven that the global minimizer is perturbed away
from the ground truth by an amount proportional to the noise level (while still
tolerate O(m2) outliers) [13]. Thus, the solution is generally coarse and needs
to be refined by post-processing, as we will discuss in Sect. 3.4. We outline the
proposed geometric estimation method with (7) in Algorithm 1.
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Algorithm 1. Geometric Estimation with Hyperplane Fitting
Input: The correspondence set S
Output: The estimated model s

1: Mapping correspondences into embeddings ai or bi to form the data matrix M.
2: Initialize z as the right singular vector corresponding to the smallest singular value

of M.
3: while not converge do
4: Compute sub-gradient: g = MT sign(Mz).
5: Update the step size μ according to a certain rule.
6: Sub-gradient descent: z = z − μg.
7: Sphere projection: z = z/‖z‖2.
8: end while
9: Compute the residuals of each correspondence with respect to z.

10: Determine the inlier set I by thresholding the residuals.
11: Post-processing on I to obtain final estimation result s.
12: return s.

3.3 Extended Exploration of Linear Structure

Although the robust formulation in (7) has encouraged several effective algo-
rithms for geometric estimation, there are some critical issues when dealing with
real-world corrupted data. Due to the inherent non-convexity of the problem,
the locally convergent algorithm can easily be trapped in weak local optima and
fail to give meaningful results, especially when the data suffer from strong noise
or heavy outliers. These motivate us to reconsider the problem in response to
the great challenge posed by practical applications.

Linear Structure with Affine Camera. First, let us start from the simple
case of affine camera model and showcase how to exploit its linear structure.
If both views are assumed to be taken by an affine camera, the two matched
feature points are related by an affine transformation:

x′
i = Axi, (8)

where

A =

⎡
⎣a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦ (9)

represents the affine matrix.
Analogous to the homography estimation case of DLT, a straightforward

solution to leverage this structure is to transform it into a hyperplane fitting
problem, with the following embedding:

cT
i =

[
xT

i 0T −x′
i

0T xT
i −y′

i

]
. (10)
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The problem can be then readily solved using (7) given n ≥ 3 correspondences,
with M = [cT

1 , cT
2 , . . . , cT

n ]T and z = [a11, a12, a13, a21, a22, a23, 1]T encoding the
affine parameters.

Note that geometric estimation using (7) actually advocates a subspace recov-
ery problem, with the data corrupted by noise and outliers. In the view of sub-
space learning theory, it is well-known that the relative dimension, i.e. d/D, the
quotient of intrinsic dimension of data d and the dimension of ambient space D,
plays an important role in the difficulty of the learning task. Generally speaking,
the subspace learning problem is significantly easier when the relative dimension
is small. To this end, we next present an alternative formulation to exploit the
linear structure, with a lower relative dimension to deal with.

Since an affine transformation only involves linear terms with respect to the
correspondence data, we consider the following embedding

di = [xi, yi, x
′
i, y

′
i, 1]T . (11)

The structure of this embedding is revealed by the following equation derived
from (8):

A′di = 0, (12)

holds for ∀i = 1, 2, . . . , n, where

A′ =
[

a11 a12 −1 0 a13

a21 a22 0 −1 a23

]
(13)

Since A′ is clearly of rank 2, this indicates that the 5-dimensional embeddings
d1,d2, . . . ,dn live in a linear subspace with dimension no more than 3.

The above observation suggests solving the following 3-dimensional subspace
recovery problem:

min
v∈RD×2

∑
i‖dT

i v‖2 = ‖Mv‖1,2, s.t. vT v = I, (14)

where M = [d1,d2, . . . ,dn]T , v = [v1,v2] represents the matrix of two orthogo-
nal unit vectors, I represents the identity matrix, and ‖ · ‖1,2 represents the sum
of the Euclidean norms of the rows of the input matrix. The relative dimension is
3/5 for (14), which is much smaller than 6/7 indicated by the hyperplane fitting
case (10). This renders the problem a much easier task for learning.

The rationale behind (14) is to find two bases of the orthogonal complement
of the linear subspace spanned by the embeddings of inliers. This can be solved
by standard robust subspace recovery methods, e.g. [21], as discussed in the
comprehensive survey [20]. In this paper, we adopt a more efficient strategy to
iteratively search the two bases. In the first iteration, a hyperplane fitting algo-
rithm is conducted to find the first basis. In the second iteration, the procedure
is similar to hyperplane fitting but with an additional projection step to find the
second basis. The additional projection step guarantees that the second basis
is orthogonal to the first one. Specifically, if we obtain the first basis v1, the
projector of its orthogonal complement should be I − v1vT

1 , then the second
basis v2 should be projected onto it as v2 = (I − v1vT

1 )v2 = v2 − v1vT
1 v2. The

algorithm to solve (14) is outlined in Algorithm2.
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Algorithm 2. Inlier Detection with Linear Embedding
Input: The correspondence set S
Output: The estimated bases I
1: Mapping the correspondences into embeddings di to form the data matrix M.
2: Initialize v = [v1,v2] as the right singular vectors of the two smallest singular

values of M.
3: while not converge do
4: Compute sub-gradient: g1 = MT sign(Mv1).
5: Update the step size μ according to a certain rule.
6: Sub-gradient Descent: v1 = v1 − μig1.
7: Sphere Projection: v1 = v1/‖v1‖2.
8: end while
9: Orthogonal Projection: v2 = v2 − v1v

T
1 v2.

10: Sphere Projection: v2 = v2/‖v2‖2.
11: while not converge do
12: Compute sub-gradient: g2 = MT sign(Mv2).
13: Update the step size ν according to a certain rule.
14: Sub-gradient Descent: v2 = v2 − νjg2.
15: Orthogonal Projection: v2 = v2 − v1v

T
1 v2.

16: Sphere Projection: v2 = v2/‖v2‖2.
17: end while
18: Compute the residuals of each correspondence with respect to v.
19: Determine the inlier set I by thresholding the residuals.
20: return I.

Extended Linear Structure. From the discussion above, we can conclude that
with an affine camera, the problem admits a much simpler solution exploiting the
linear embedding di. Thus, a natural question is, can Algorithm 2 be extended
to more general scenarios where the affine camera assumption is not strictly
satisfied? Next, we try to positively answer the question.

To respond to the question, the first step is to answer that, what can we
obtain from Algorithm 2 in general scenarios? There are different angles to put
an analysis to it, as we will explain in detail next.

The first discussion is based on some important conclusions in Sect. 6.3 of [17].
We denote xp the measured image feature point from a general finite projective
camera, and xa the virtual image feature point of the same 3D point, but from
the virtual camera at infinity. It can be deduced that x̃p and x̃a are related by
the following equation:

x̃a − x̃p =
Δ

d0
(x̃p − x̃0), (15)

where x0 denotes the principal point, x̃a, x̃p and x̃0 represent row vector of
dehomogenized coordinates, and Δ and d0 can be understood as the depth relief
and the average depth given the imaging scene. Suppose we are given a corre-
spondence (xp, x′

p) from two general cameras, the corresponding linear embed-
ding is d = [x̃p, x̃′

p, 1]T . Based on the observation in (15), d can be understood
from another point of view: d = [x̃a + ε, x̃′

a + ε′, 1]T , where ε = Δ
d0

(x̃0 − x̃p) and
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Algorithm 3. Homography Estimation with Linear Embedding
Input: The correspondence set S
Output: The estimated model s

1: Apply Algorithm 2 on S to find an inlier set I.
2: Post-processing on I to determine final estimation result s.
3: return s.

ε′ = Δ
d0

(x̃′
0− x̃′

p) represent the noise proportional to Δ
d0

. As xa and x′
a are related

by an affine model, if Δ
d0

is sufficiently small, we can still use Algorithm 2 with
simple linear embedding of correspondences to exploit the structure, due to the
noise-robust property of the �1 based objective. In this case, most inliers can be
detected by Algorithm 2 if the camera is far from scene (d0 is large). Otherwise,
the detected inliers will generally lie closely to a plane that exhibits a small
depth relief (Δ is small) and may only include a subset of the true inliers.

In a different point of view, we can also explain the results from the models
themselves. Although affine model cannot describe exactly the perspective plane-
plane transformation, it can be seen as the linear approximation of the non-linear
homography model. This indicates that the affine model can be applied at least
locally for the correspondences. In this case, the inliers that are spatially adjacent
in one image can be detected by Algorithm 2.

Concluding from the discussions above, we can see that in general scenar-
ios, Algorithm 2 can be applied to detect at least a subset of the inliers. This
is because the �1-based objective is more insensitive to the error induced by
approximation. However, there is still a gap between the detected inliers and
a model of good quality. In this paper, we show that the gap can be filled by
applying local refinement technique to find the optimal model. This leads to the
following extensions.

(1) Homography Estimation. As discussed above, when the scenes conform to
a more general homography transformation, Algorithm 2 is not the ideal
choice. However, we can expect that at least a subset of the inliers can be
detected by Algorithm 2. In this case, we choose to subsequently run a local
optimization step to include more inliers and recover the true homography.
The detail is discussed in our post-processing procedure in Sect. 3.4. Some
illustrative examples are given in Sect. 4.1. The algorithm is outlined in
Algorithm 3.

(2) Fundamental Matrix Estimation. For fundamental matrix estimation task,
it is generally unsolvable if we only have a group of affine or homography
related correspondences [12]. To this end, we propose to detect two groups
of inliers of disjoint planes, like a sequential RANSAC method [34]. In the
first iteration, a group of inliers are detected by Algorithm2, subsequently,
the first group of inliers are excluded to detect the second group of inliers.
Finally, fundamental matrix estimation can be achieved from the inliers of
the two groups combined. Some illustrative examples are given in Sect. 4.1.
The algorithm is outlined in Algorithm4.
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Algorithm 4. Fundamental Matrix Estimation with Linear Embedding
Input: The correspondence set S
Output: The estimated model s

1: Apply Algorithm 2 on S to find an inlier set I1.
2: Exclude I1 from S to form S ′.
3: Apply Algorithm 2 on S ′ to find an inlier set I2.
4: Post-processing on I1

⋃ I2 to determine final estimation result s.
5: return s.

(a) homogr (b) EVD (c) kusvod2

(d) AdelaideRMF (e) RS

Fig. 1. Some illustrative examples of our SRE. For the image pair, only a subset of
100 correspondences are shown for visibility. A motion field is additionally shown for
each pair, where the head and tail of each arrow correspond to the positions of feature
points in two images. The identified inliers are drawn in blue and outliers in black.
(Color figure online)

3.4 Implementation Details

To improve numerical stability, the correspondence data are mapped into embed-
dings and then normalized to unit norm before processed by our algorithm.

Post-processing. After obtaining the inlier set I, since the detected inliers may
still include a number of outliers, and to achieve better accuracy, we run a fixed
100 samples from I and derive the models (homography, fundamental matrix)
using DLT from them. Each model is evaluated on the original correspondence
set and each so-far-the-best model is refined by a local optimization step [19].
Finally, we take the best model with the largest consensus as the output esti-
mation result. Note that this strategy also require a predefined inlier-outlier
threshold as the random sampling techniques do.

4 Experimental Results

In this section, we investigate the performance of the proposed method on real
image data for the geometric estimation task. We name our method subspace
recovery estimator (SRE). Some illustrative examples are shown in Fig. 1.
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Fig. 2. Illustrative examples from homogr of SRE for homography estimation. The first
row represents the detected inliers by Algorithm 2, and the second row represents the
inliers after post-processing to find a homography.

Homography Estimation. The widely used homogr1 and the EVD2 dataset
are adopted. The homogr dataset contains 16 image pairs of relatively short
baselines, while the EVD dataset contains 15 image pairs undergoing extremely
view changes, i.e., wide baselines. Both datasets are provided with a number of
manually selected true correspondences for model evaluation. Additionally, we
also collect 20 pairs of remote sensing images to create the RS dataset. Since the
imaging equipment is very far from the scene in remote sensing, it conforms to
the affine camera model almost perfectly. The RS dataset is featured by a high
outlier ratio (above 80% in average), which serves to test the robustness of each
method under extreme outliers. The inliers are manually labeled for this dataset.

Fundamental Matrix Estimation. The widely used kusvod23 and the
AdelaideRMF4 dataset are adopted. The kusvod2 contains 16 image pairs of
both weak and strong perspectives, and a number of true correspondences are
provided for model evaluation. The AdelaideRMF dataset includes a set of image
pairs of campus buildings equipped with manually labelled keypoint correspon-
dences, and we use a 19-pair subset of it undergoing only a single motion. The
image pairs are generally of weak perspective since the camera is distant to the
building.

4.1 Qualitative Analysis of Linear Embedding

Our SRE involves several strategies for geometric estimation, based on the
exploition of different embeddings of correspondences, i.e. (4), (5), and (11).
While (4) and (5) is well-grounded since they are derivatives of the classic DLT,
the efficacy of linear embedding (11) requires to be further investigated for gen-
eral scenes.

The illustrative examples for homography estimation with linear embedding,
i.e. Algorithm 3, are shown in Fig. 2. It can be seen that the detected inliers may
only be a subset of the true inliers, and even include some outliers. However,
after the post-processing involving local optimization steps, all inliers can be

1 http://cmp.felk.cvut.cz/data/geometry2view/.
2 http://cmp.felk.cvut.cz/wbs/.
3 http://cmp.felk.cvut.cz/data/geometry2view/.
4 https://cs.adelaide.edu.au/∼hwong/doku.php?id=data.

http://cmp.felk.cvut.cz/data/geometry2view/
http://cmp.felk.cvut.cz/wbs/
http://cmp.felk.cvut.cz/data/geometry2view/
https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Fig. 3. Illustrative examples from kusvod2 of SRE for fundamental matrix estimation.
The first two rows represent the first and second groups of detected inliers by Algo-
rithm 2. The last row represents the inliers after post-processing to find a fundamental
matrix.

found and the true homography can be then recovered. The illustrative examples
for fundamental matrix estimation with linear embedding, i.e. Algorithm 4, are
shown in Fig. 3. Clearly, for a single run of Algorithm2, the detected inliers
generally lie closely to a plane. However, by running Algorithm2 iteratively to
find the second group of inliers and merging the two groups, the inlier set is then
sufficiently diverse, leading to accurate estimation results after post-processing.
Note that the detected inliers do not necessarily lie closely to a natural plane of
the 3D object, practically, they may also be grouped by a virtual plane in the
3D space.

4.2 Fundamental and Homography Estimation

In our SRE, embeddings based on fundamental matrix and homography estima-
tion in DLT, i.e. (4) and (5), can be used as in Algorithm 1. The linear embed-
ding, i.e. (11), can be utilized in Algorithm 2. Another embedding of interest
is (10), which can be used in a similar way to Algorithm 1. We denote these
variants as SRE-F, SRE-H, SRE-A and SRE-At, respectively. For SRE-F, the
detected inliers are directly used for homography and fundamental matrix esti-
mation. For SRE-H, SRE-A and SRE-At, a single run is conducted for homog-
raphy estimation, and two runs to find two groups of inliers are conducted for
fundamental matrix estimation.

We compare our SRE with the baseline RANSAC [15], and the state-of-the-
art methods USAC [29] and MAGSAC [2]. The parameters are setting accord-
ing to the original papers. The number of maximum trials is set to 5, 000 for
RANSAC, MAGSAC and USAC1, and 50, 000 for USAC2. For our SRE, we
empirically set the threshold as 1/5 of the mean residual to identify inliers. The
inlier-outlier threshold is set to 2 pixels for all methods.

We use the average geometric error of the given inliers w.r.t. the estimated
model as the evaluation metric. As a failed model would induce unreliable statis-
tics, we exclude the failed cases to compute the average error (e) and also report
the proportion of failures (f). The geometric error is computed as the Sampson
distance. To determine a failed model, we use two thresholds, i.e., 5 pixels (e1,
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Table 1. Quantitative evaluation. The datasets, problems, numbers of image pairs and
metrics are shown in the first three columns. The other columns show the average mean
geometric error (e) and proportion of failures (f) over 100 runs, where the subscripts
1 and 2 denote the results given 5 and 10 pixels as the threshold to determine a
failed model, respectively. The mean processing time (in milliseconds), i.e. t, and the
summary statistics of all datasets, i.e. all, are given. Bold indicates the best result.

Alg. RANSAC USAC1 USAC2 MAGSAC SRE-F SRE-H SRE-At SRE-A

homogr H,16 e1 1.73 1.41 1.40 1.69 1.14 1.15 1.12 1.15

f1 0.055 0.141 0.100 0.210 0.078 0.163 0.148 0.036

e2 1.92 1.56 1.53 1.87 1.31 1.37 1.34 1.31

f2 0.016 0.116 0.077 0.181 0.046 0.124 0.108 0.001

t 207.1 20.9 37.3 185.2 69.0 70.6 66.2 68.4

EVD H,15 e1 1.91 1.04 1.02 1.31 1.04 1.00 0.93 1.02

f1 0.255 0.734 0.733 0.208 0.263 0.367 0.506 0.216

e2 2.30 1.06 1.02 1.50 1.08 1.34 1.39 1.08

f2 0.189 0.733 0.733 0.181 0.259 0.334 0.471 0.208

t 343.9 29.3 196.9 213.8 54.1 58.5 58.3 50.4

kusvod2 F,16 e1 1.65 1.56 1.52 1.03 0.81 0.80 0.76 0.81

f1 0.143 0.094 0.085 0.151 0.139 0.132 0.137 0.084

e2 1.94 1.77 1.70 1.32 1.13 0.95 0.85 0.87

f2 0.096 0.056 0.053 0.109 0.094 0.112 0.125 0.076

t 13.8 16.4 16.8 338.9 32.2 36.7 34.6 38.9

Adelaide F,19 e1 0.76 0.65 0.63 0.89 0.63 0.62 0.58 0.55

f1 0.002 0.001 0.000 0.084 0.068 0.117 0.094 0.000

e2 0.78 0.66 0.63 1.17 0.83 0.71 0.66 0.55

f2 0.000 0.000 0.000 0.041 0.040 0.106 0.084 0.000

t 41.8 26.2 37.8 290.5 33.3 35.3 30.4 33.0

RS H,20 e1 1.65 0.94 1.15 1.95 1.68 2.11 1.96 2.22

f1 0.349 0.603 0.227 0.763 0.618 0.818 0.805 0.085

e2 2.17 1.00 1.18 2.90 1.96 2.26 2.23 1.59

f2 0.182 0.599 0.221 0.709 0.590 0.812 0.791 0.000

t 945.4 23.6 92.7 862.0 136.2 151.1 145.2 117.4

all e1 1.48 1.12 1.13 1.25 0.98 0.94 0.90 0.94

f1 0.163 0.312 0.215 0.300 0.245 0.335 0.349 0.079

e2 1.87 1.22 1.21 1.57 1.18 1.13 1.23 1.09

f2 0.096 0.299 0.203 0.259 0.217 0.314 0.328 0.051

t 330.2 23.4 74.2 399.5 67.2 72.9 69.3 62.5

f1) and 10 pixels (e2, f2). If the estimated model induces an average geomet-
ric error larger than the threshold, it is then deemed as a failed one. For each
method, we report the statistics from 100 runs on each image pair.

The evaluation results are given in Table 1. It can be seen that RANSAC
is quite robust compared to USAC and MAGSAC, resulting in a low propor-
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Fig. 4. The performance comparison of our SRE-A and USAC2 on synthetic data. The
left figure gives the result in terms of proportion of failures, and the right gives the
result in terms of proportion of runtime.

tion of failures. However, it is generally less accurate and very time consuming
for geometric estimation task. USAC unifies many important advancements of
the random sampling based estimators, and achieves significant improvements
in terms of both accuracy and efficiency. However, the robustness seems to be
impaired, and its performance on the challenging datasets, i.e. EVD and RS is
very limited. MAGSAC was proposed to get rid of the need to specify an inlier-
outlier threshold. It performs well on the EVD dataset, however, its robustness
is not consistent on the other datasets, and cannot handle the challenging RS.
For all the four variants of our SRE, the efficiency is advantaged and compara-
ble to USAC. Specifically, SRE-F and SRE-H are often more accurate, but the
robustness is not advantaged. SRE-A outperforms SRE-At by a large margin,
since the induced subspace recovery problem is much easier to solve. Overall,
the most effective variant of our SRE is SRE-A. It is the most robust in average,
and comparatively efficient to USAC with preferable accuracy.

To conclude, SRE-A is the best performer among all the variants of our SRE.
Compared to the current state-of-the-art geometric estimation algorithms, it is
the most robust one with preferred accuracy. The efficiency is comparable to
the fastest USAC. A nice property of SRE-A is its robustness to outliers, as
demonstrated on RS dataset where it shows significantly better results.

4.3 Sensitivity to Outlier Rate

Since the goal of our algorithm is to conduct geometric estimation in the pres-
ence of outliers, a straightforward question is its sensitivity to outlier rate. For
investigation, we use the AdelaideRMF dataset since the inlier correspondences
are annotated. We generate the outlier correspondences by matching two ran-
dom points in the two images and control the outlier rate by adding a number of
randomly generated outliers to the inliers. In the experiment, 100 runs are con-
ducted for each algorithm on each instance to give the average performance. We
use the best performer SRE-A, and the USAC algorithm with maximum trials
of 50, 000 (USAC2) for comparison. The proportion of failures (with 5 pixels as
threshold) and runtime are used for evaluation, and the results are presented in
Fig. 4.



476 A. Fan et al.

From the results in Fig. 4, we can see that our SRE-A outperforms USAC in
both robustness (smaller proportion of failures) and efficiency. Our method can
still work under extreme outliers (up to 95%), whereas USAC2 tends to fail in
such circumstances. Also, the efficiency of our method is unaffected by the outlier
rate. This is a significant advantage since the runtime of USAC grows exponen-
tially with the outlier rate increasing, until the maximum trials is approached.

5 Conclusion

In this paper, we propose a novel method SRE for geometric estimation. With a
robust �1-based objective, the intrinsic linear structure is explored, and several
efficient algorithms are designed for geometric estimation with robust subspace
recovery technique. Experiments on real-world image data demonstrate the supe-
riority of the proposed SRE, in terms of both robustness and accuracy compared
to the state-of-the-art.
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